5.4 Faraday effect

5.4.1 The effect

In 1845, Michael Faraday found that the plane of vibration of linearly polarized light incident on a piece of glass rotated when a strong magnetic field was applied in the

Fig. 5.22 A Faraday effect modulator..
propagation direction. This is known as Faraday effect.
Fig. 5.22 shows the experimental setup of Faraday effect.
The angle β through which the plane of vibration rotates is given by a empirically determined expression

$$
\begin{equation*}
\beta=\eta B d \tag{5.23}
\end{equation*}
$$

where B is the static magnetic flux density (usually in Gauss), d is the length of medium traversed (in cm), and η is a factor of proportionality known as the Verdet constant. The Verdet constant for a particular medium varies with both frequency and temperature. Table 5.1 lists Verdet constants of some materials.

Table 5.1 Verdet constants for some substances.

Material	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$V(\mathrm{~min}$ of arc gauss $\left.\mathrm{cm}^{-1}\right)$
Light flint glass	18	0.0317
Water	20	0.0131
NaCl	16	0.0359
Quartz	20	0.0166
$\mathrm{NH}_{4} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	26	-0.00058
Air^{*}	0	6.27×10^{-6}
$\mathrm{CO}_{2}{ }^{*}$	0	9.39×10^{-6}

5.4.2 The explanation

Fig. 5.23 The superposition of an R- and an L-state

A incident linear wave can be represented as a superposition of R - and L -states as shown in Fig 5.23. An elastically bound electron in the material will take on steady-state circular orbit driven by the rotating \mathbf{E}-field of the wave (while the effect of the wave's \mathbf{B}-field is negligible). The introduction of a large constant applied magnetic field perpendicular to the plane of the orbit will result in a radial force F_{M} on the electron. That force can point either toward or away from the circle's center, depending on the handedness of the light and the direction of the constant \mathbf{B}-field. The total radial force (F_{M} plus the elastic restoring force) can therefore have two different values and so too can the radius of the orbit. Consequently, for a given magnetic field there will be two possible values of the electric dipole moment, the polarization, and the permittivity, as well as two values of the index of refraction, n_{R} and n_{L}.

Suppose the linear polarization is along the positive x-axis at the entrance of the material

After traveling through the sample with thickness d , the R-state rotates an angle ($k_{R} d-\omega t$)clockwise and the L-state rotates an angle ($k_{L} d-\omega t$) anticlockwise. The resultant linear polarization direction rotates an angle $\beta=\left(k_{R}-k_{L}\right) d / 2$ as shown in Fig. 5.24. Since $k=2 \pi / \lambda=2 \pi n / \lambda_{0}$

$$
\begin{equation*}
\beta=\frac{\pi d}{\lambda_{0}}\left(n_{R}-n_{L}\right) \tag{5.24}
\end{equation*}
$$

The difference $n_{R}-n_{L}$ is proportional to the applied B-filed. Therefore Eq. (5.24) is the same as Eq. (5.23).

Fig. 5.24 The superposition of an Rand an L-state after traveling a sample of thickness d.

